Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3867, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391402

RESUMO

Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies.


Assuntos
Núcleo Celular , Lâmina Nuclear , Laminas , Membrana Nuclear , Cromatina
2.
Mol Biol Cell ; 33(11): ar101, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35895088

RESUMO

Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.


Assuntos
Cromatina , Células Endoteliais , Acetilação , Cromatina/metabolismo , Células Endoteliais/metabolismo , Histonas/metabolismo , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular
3.
Biophys J ; 121(4): 620-628, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999130

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a single-point mutation in the lamin A gene, resulting in a truncated and farnesylated form of lamin A. This mutant lamin A protein, known as progerin, accumulates at the periphery of the nuclear lamina, resulting in both an abnormal nuclear morphology and nuclear stiffening. Patients with HGPS experience rapid onset of atherosclerosis, with death from heart attack or stroke as teenagers. Progerin expression has been shown to cause dysfunction in both vascular smooth muscle cells and endothelial cells (ECs). In this study, we examined how progerin-expressing endothelial cells adapt to fluid shear stress, the principal mechanical force from blood flow. We compared the response to shear stress for progerin-expressing, wild-type lamin A overexpressing, and control endothelial cells to physiological levels of fluid shear stress. Additionally, we also knocked down ZMPSTE24 in endothelial cells, which results in increased farnesylation of lamin A and similar phenotypes to HGPS. Our results showed that endothelial cells either overexpressing progerin or with ZMPSTE24 knockdown were unable to adapt to shear stress, experiencing significant cell loss at a longer duration of exposure to shear stress (3 days). Endothelial cells overexpressing wild-type lamin A also exhibited similar impairments in adaptation to shear stress, including similar levels of cell loss. Quantification of nuclear morphology showed that progerin-expressing endothelial cells had similar nuclear abnormalities in both static and shear conditions. Treatment of progerin-expressing cells and ZMPSTE24 KD cells with lonafarnib and methystat, drugs previously shown to improve HGPS nuclear morphology, resulted in improvements in adaptation to shear stress. Additionally, the prealignment of cells to shear stress before progerin-expression prevented cell loss. Our results demonstrate that changes in nuclear lamins can affect the ability of endothelial cells to properly adapt to shear stress.


Assuntos
Lamina Tipo A , Progéria , Adolescente , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/genética , Progéria/metabolismo , Estresse Mecânico
4.
Mol Biol Cell ; 32(18): 1654-1663, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34191529

RESUMO

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a structure consisting of nesprin, SUN, and lamin proteins. A principal function of the LINC complex is anchoring the nucleus to the actin, microtubule, and intermediate filament cytoskeletons. The LINC complex is present in nearly all cell types, including endothelial cells. Endothelial cells line the innermost surfaces of blood vessels and are critical for blood vessel barrier function. In addition, endothelial cells have specialized functions, including adaptation to the mechanical forces of blood flow. Previous studies have shown that depletion of individual nesprin isoforms results in impaired endothelial cell function. To further investigate the role of the LINC complex in endothelial cells we utilized dominant negative KASH (DN-KASH), a dominant negative protein that displaces endogenous nesprins from the nuclear envelope and disrupts nuclear-cytoskeletal connections. Endothelial cells expressing DN-KASH had altered cell-cell adhesion and barrier function, as well as altered cell-matrix adhesion and focal adhesion dynamics. In addition, cells expressing DN-KASH failed to properly adapt to shear stress or cyclic stretch. DN-KASH-expressing cells exhibited impaired collective cell migration in wound healing and angiogenesis assays. Our results demonstrate the importance of an intact LINC complex in endothelial cell function and homeostasis.


Assuntos
Adesão Celular/fisiologia , Complexos Multiproteicos/metabolismo , Adaptação Fisiológica , Fenômenos Biomecânicos , Movimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Transferência Ressonante de Energia de Fluorescência , Adesões Focais/genética , Adesões Focais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Mecânico , Imagem com Lapso de Tempo , Cicatrização
5.
Adv Biol (Weinh) ; 5(6): e2000592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33759402

RESUMO

Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments' spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob-like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers' fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body-fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho-associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.


Assuntos
Matriz Extracelular , Esforço Físico , Adesão Celular , Movimento Celular , Fenômenos Mecânicos
6.
Nucleus ; 11(1): 194-204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32816594

RESUMO

The nuclear lamina is a meshwork of intermediate filament proteins, and lamin A is the primary mechanical protein. An altered splicing of lamin A, known as progerin, causes the disease Hutchinson-Gilford progeria syndrome. Progerin-expressing cells have altered nuclear shapes and stiffened nuclear lamina with microaggregates of progerin. Here, progerin microaggregate inclusions in the lamina are shown to lead to cellular and multicellular dysfunction. We show with Comsol simulations that stiffened inclusions causes redistribution of normally homogeneous forces, and this redistribution is dependent on the stiffness difference and relatively independent of inclusion size. We also show mechanotransmission changes associated with progerin expression in cells under confinement and cells under external forces. Endothelial cells expressing progerin do not align properly with patterning. Fibroblasts expressing progerin do not align properly to applied cyclic force. Combined, these studies show that altered nuclear lamina mechanics and microstructure impacts cytoskeletal force transmission through the cell.


Assuntos
Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lamina Tipo A/biossíntese , Lamina Tipo A/metabolismo , Mecanotransdução Celular , Agregados Proteicos , Humanos , Lamina Tipo A/genética
7.
Biophys J ; 115(5): 853-864, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30131170

RESUMO

Cell proliferation and contact inhibition play a major role in maintaining epithelial cell homeostasis. Prior experiments have shown that externally applied forces, such as stretch, result in increased proliferation in an E-cadherin force-dependent manner. In this study, the spatial regulation of cell proliferation in large epithelial colonies was examined. Surprisingly, cells at the center of the colony still had increased proliferation as compared to cells in confluent monolayers. E-cadherin forces were found to be elevated for both cells at the edge and center of these larger colonies when compared to confluent monolayers. To determine if high levels of E-cadherin force were necessary to induce proliferation at the center of the colony, a lower-force mutant of E-cadherin was developed. Cells with lower E-cadherin force had significantly reduced proliferation for cells at the center of the colony but minimal differences for cells at the edges of the colony. Similarly, increasing substrate stiffness was found to increase E-cadherin force and increase the proliferation rate across the colony. Taken together, these results show that forces through cell-cell junctions regulate proliferation across large groups of epithelial cells. In addition, an important finding of this study is that junction forces are dynamic and modulate cellular function even in the absence of externally applied loads.


Assuntos
Caderinas/metabolismo , Células Epiteliais/citologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Caderinas/genética , Proliferação de Células/genética , Cães , Endocitose/genética , Leucina/metabolismo , Células Madin Darby de Rim Canino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...